New Self-Cleaning Membranes Developed by NYU Abu Dhabi Researchers Dramatically Improve the Efficiency of Desalination Technologies 

New Self-Cleaning Membranes Developed by NYU Abu Dhabi Researchers Dramatically Improve the Efficiency of Desalination Technologies 

Embedded with organic crystals, hybrid membranes use “smart separation” approach that is more effective and environmentally sustainable

Abu Dhabi, UAE, September 20, 2023: A team of NYU Abu Dhabi (NYUAD) researchers has developed a new kind of self-cleaning, hybrid membrane that provides a solution that overcomes significant challenges that have, until now, limited desalination technologies.

The most energy-efficient desalination technologies are based on membrane desalination. However, the membranes used for desalination are prone to fouling, the accumulation of scale that results in decreased membrane performance, shorter lifespan, and the need for chemical cleaning, which has unknown environmental consequences. 

Researchers at NYUAD’s Smart Materials Lab and the Center for Smart Engineering Materials, led by Professor Panče Naumov and Research Scientist Ejaz Ahmed, together with their collaborators from the Institute for Membrane Technology in Italy, created a unique hybrid membrane by utilizing stimuli-responsive materials, thermosalient organic crystals, embedded in polymers. The thermosalient crystals are a new class of dynamic materials that are capable of sudden expansion or motion upon heating or cooling.

Combining these microcrystals with traditional, porous membranes, the researchers developed a “smart” membrane capable of deformation by self-modulating its pore size and surface properties in response to changes in temperature. The crystals on the surface of the membrane respond to short-term increase in temperature, which activates the membrane to effectively remove the deposited contaminants from its surface. The researchers found that this “gating” process increased the flow of desalinated water by more than 43 percent through osmotic distillation and significantly extended the membrane’s operational lifetime.

The findings are presented in a paper titled Smart Dynamic Hybrid Membranes with Self-Cleaning Capability, published in the journal Nature Communications.

The ability of hybrid membranes to self-clean and minimize fouling could make desalination technologies more efficient and could increase the availability of freshwater. More than a third of the world’s population currently suffers from shortages of drinkable water, a number expected to reach 50 percent by 2025. In water-deficient countries, such as those in arid regions like the MENA region, membrane desalination of seawater helps coastal communities address local deficiencies. 

“There is an urgent need for energy-efficient membranes capable of water desalination and other separation technologies that eliminate fouling issues without utilizing harsh chemicals as cleaners,” said Naumov. “The hybrid membrane we have developed demonstrates favorable consistency in performance after several cycles of descaling. With more than twenty types of dynamic organic crystals available to use with different membrane compositions, our novel approach represents an important step forward towards the development of a new generation of “smart” membranes that will be capable of self-cleaning in an energy-saving and environmentally benign manner, which will effectively improve the cost-effectiveness of the overall process of potable water production.”

This research is being carried out in the same period that NYUAD is chairing the Universities Climate Network (UCN). Comprising UAE-based universities and higher education institutions, the UCN collaborates on facilitating dialogues, workshops, public events, policy briefs, and youth participation in the lead up to and beyond COP28.

# # #

About NYU Abu Dhabi

www.nyuad.nyu.edu
NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective program with majors in the sciences, engineering, social sciences, arts, and humanities with a world center for advanced research. Its campus enables students to succeed in an increasingly interdependent world, and to advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from some 120 countries and speak over 115 languages. Together, NYU’s campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents. 

spot_img

More from this stream

Recomended

Prepare for Turbulence: Social Media Polarization is Set to Intensify!

Discover how relying on social media users for information accuracy can intensify polarization and elevate extreme voices on platforms. Insights from The Converser shed light on this critical issue.

“Unveiling Plastic’s Charm: The Hidden Costs of Our Love Affair with Convenience”

Discover insights from plastic waste expert Mark Miodowonik on the history of plastic and the crucial responsibility of manufacturers in ensuring effective recycling. Learn more about sustainable practices with The Converser.

Record-Breaking Ocean Heat in 2024: Unraveling Two Intriguing Mysteries Beneath the Waves!

Discover why the oceans have been unusually warm for the past two years and learn about the recent global heat record. Get insights into the causes and implications of these environmental changes from The Converser.

“Maduro’s New Term: Navigating Legitimacy Challenges and Rising Global Tensions”

Discover how the recent constitutional reform has been characterized as a strategic move by the government, according to The Converser, amidst opposition and international concerns.

“Wildfire Risk Soars in Southern California: Explore Maps Highlighting the Region’s Alarming Dry Conditions”

Discover the stark water divide in the state this year, with heavy rainfall in the north and dry conditions in the south. A hydrologist from The Converser explains the underlying factors driving this disparity.

“2024 Marks a Pivotal Moment: Global Temperatures Surpass the Crucial 1.5°C Threshold!”

Discover how 2024 marks the first calendar year of global warming surpassing 1.5°C, leading to unprecedented extremes that threaten both humans and ecosystems. Read more insights from The Converser.